PROTAC THERAPY IN THE T-CELL MALIGNANCIES (*PROTEOLYSIS-TARGETING CHIMERAS*)

Owen A. O'Connor, M.D., Ph.D. American Cancer Society Research Professor Professor of Medicine Co-Director, Program for T-Cell Lymphoma Research Department of Medicine – Division of Hematology / Oncology University of Virginia Cancer Center Professor, Department of Microbiology, Immunology and Cancer Biology University of Virginia Charlottesville, VA

> T-Cell Lymphomas: Finally, Vision and Mission! October 25-26, 2022 Bologna

PROTAC THERAPY IN THE T-CELL MALIGNANCIES (*PROTEOLYSIS-TARGETING CHIMERAS*)

- Targeting STAT3 in PTCL: The First Foray of a PROTAC in the Disease
- Why Target STAT3 in PTCL?
- What is a PROTAC and Just How Does it Work?
- Preclinical Data with a STAT3 Targeted Protein Degrader
- The First Clinical Trial Design of KT-333, a STAT3 TPD
- Other Relevant Targets: MDM2
- Conclusion

STAT3 HAS UNIQUE TUMOR CELL INTRINSIC AND EXTRINSIC MECHANISMS

- High degree of validation of JAK-STAT pathway in oncology and immuno-oncology supported by >25k publications
- Traditionally undrugged target
- First-in-class opportunity to address STAT3 driven pathology across large and diverse indications

Tumor Cell Intrinsic

- Hyperactivation of STAT3 via either receptor signaling, or hotspot mutations promotes gene expression programs involved with survival, proliferation, stemness and metastasis of tumor cells
- Opportunities in STAT3-dependent malignancies (e.g., T cell malignancies, DLBCL, AML) and drug resistant tumors (e.g., TKI resistant oncogene-driven solid tumors)

Tumor Cell Extrinsic

- STAT3 promotes the differentiation and activity of immunosuppressive and endothelial cells, resulting in an immunosuppressive tumor microenvironment.
- Opportunities in multiple heme and solid tumor indications that are not responsive to immune checkpoint inhibitors.

JANUS TYROSINE FAMILY OF KINASES/SIGNAL TRANSDUCE AND ACTIVATOR OF TRANSCRIPTION (JAK/STAT) IS COMMONLY DYSREGULATED ACROSS MANY TYPES OF T-CELL MALIGNANCY

- STAT3 is a transcription factor that mediates signal transduction through cytokine receptors (IL06R, IL-10 and IL-21)
- It enhances pro-survival signaling essential for T-cell expansion.
- When it becomes constitutively activated – that is, independent of the cytokine binding – it contributes to T-cell lymphomagenesis
- Previous efforts to target this pathway therapeutically have not been very successful

UVA CANCER CENTER An NCI-designated Cancer Center

WVAHealth

 After binding of a cytokine to its receptor JAK-family kinases are recruited to the cytosolic domain of the receptor and facilitate auto- and/or transphosphorylation of tyrosine residues on the JAK proteins and the receptor
 Specific STAT subunits, dependent on the receptor-JAK combination, are recruited, docked on the phosphorylated receptor tyrosine residues, and activated by a series of phosphorylation events
 Activated STAT is translocated to the nucleus and participates in STAT-mediated transcription whilst promoting NF-κB transcription.

- Receptor tyrosine kinases (RTKs), non-receptor
 TKs, and G-protein coupled receptors (GPCRs) can also activate STAT.
- JAK activation leads to crosstalk with the PI3K-AktmTOR and Ras-Raf-MEK-ERK pathways.
- Endogenous JAK-STAT inhibition also includes the activity of PTPs like SHP1, which inhibit JAK-STAT proteins via dephosphorylation.

UVA CANCER CENTER An NCI-designated Cancer Center

WVAHealth

- A diverse repertoire of cytokines bind to their cognate receptors and lead to JAK/STAT3 activation
- There are subtle differences in the JAK and STAT signaling components of each cytokine pathway
- STAT3 is common component across most of the cytokine mediated pathways

ALTERATIONS IN JAK/STAT SIGNALING AS A FUNCTION OF T-CELL ONTOGENY IN NORMAL AND MALIGNANT CELLS

CONSTITUTIVE ACTIVATION OF STAT3 IS COMMON ACROSS PTCL SUBTYPES SIGNIFICANT VARIATION IS PATHWAY DYSREGULATION

Disease	Frequency (pSTAT3 positive)		
Across PTCL (n=169)	38%		
ALK(+) ALCL	93% (STAT3 is target for NPN-ALK)		
ALK(-) ALCL	57%		
AITL	29%		
ATLL	43% (improved survival)		
LGL	More common in CD8+, and correlate with shorter TTF and AIHA and RA		
EATL	16% (most commonly mutated signaling pathway)		

PROTAC THERAPIES.....FROM THE BEGINNING

PROTAC = Proteolysis targeting chimera

The concept is drawn from viruses and plants which have evolved sophisticated strategies to hijack the ubiquitin-proteasome system for its own survival

For example, the E6 protein of human papillomavirus type 16 (HPV-16) and type 18 (HPV-18) recruits the human E3 ligase, ubiquitin–protein ligase E3A (also known as E6AP) to ubiquitylate p53, resulting in loss of tumor suppressor functions.

Human immunodeficiency virus 1 (HIV-1) deploys Vpr and Vpx, to recruit DDB1 and CUL4-associated factor 1 (DCAF1) to target several different human proteins, including DNA repair proteins, for ubiquitylation (makes cell error prone)

Therapeutic significance conceived around 2000

Arvinas was first to clinic with AR degraders (ARV110) and ER degrader (ARV471)

UVA CANCER CENTER

An NCI-designated Cancer Center

VIRTUALLY ANY PROTEIN CAN BE TARGETED.....

....because every protein in the cell needs to come and go.....and the E3 ligase is the major pathway to elimination of intracellular protein.

- Small molecule binds to E3 and target protein to effect its degradation
- Small Molecule only needs to "weakly" bind to protein and does have to inhibit its function
- Highly potent and specific hence small amount of drug needed
- Highly specific
- Can create genetic-like knock-down effects
- Advantages of small molecule development: Route of administration, manufacturing

PROTAC THERAPIES OFFER THE PROSPECT OF EXPANDING THE DRUGGABLE PROTEOME WITH TARGETED PROTEIN DEGRADATION (TPD)

Presently available therapeutic modalities can **only drug up to 20%** of proteome

PROTAC Therapies can **expand the drugged proteome** with Targeted Protein Degradation (TPD)

TARGETED PROTEIN DEGRADATION

UVA CANCER CENTER *An NCI-designated Cancer Center*

WAHealth

KT-333 DEMONSTRATES HIGHLY SELECTIVE DEGRADATION OF STAT3

- Deep mass spectrometry-based proteomics to assess STAT3 selectivity performed
- In hPBMC and SU-DHL-1 cancer line (shown), treatment with KT-333 degrader led to selective degradation of only STAT3 protein

UVA CANCER CENTER An NCI-designated Cancer Center

WVAHealth

FULL AND DURABLE REGRESSIONS ACROSS MULTIPLE IN VIVO PRECLINICAL TUMOR MODELS

- Mice bearing STAT3-dependent ALK+ ALCL SU-DHL-1 (above) and STAT3driven ALK+ ALCL xenograft model SUP-M2 (below) tumors dosed with STAT3 degrader
- Dose and degradation dependent tumor growth inhibition observed with oncea-week IV dosing
- 30 mg/kg sufficient to drive full tumor regression that was durable for multiple weeks after the last dose

STAT3 DEGRADER SENSITIZES TO PD-1 BLOCKADE

SYNGENEIC COLON CARCINOMA MODEL

UVA CANCER CENTER An NCI-designated Cancer Center

KT-333: CLINICAL STUDY DESIGN AND OBJECTIVES

R/R B-cell lymphoma

- ≥ 2 prior systemic regimens
- Ineligible or refused CAR-T or ASCT

Advanced solid tumors

 ≥ 2 prior systemic regimens or no available SOC

Primary Objective:

 To evaluate safety, PK/PD in PTCL, CTCL, LGL-L and solid tumors

Study Endpoints:

- Primary: Safety, tolerability, MTD/RP2D
- Secondary: PK, preliminary efficacy
- Exploratory: STAT3 knockdown and downstream effects in PBMC and tumor

MDM2 DEGRADATION, NOT INHIBITION, EFFICIENTLY RESTORES P53

Clinical Validation

- MDM2 small molecule inhibitors of MDM2/p53 interaction show activity in the clinic..
- ...but they induce MDM2 feedback loop resulting in limited impact on pathway

Degrader Advantage

- MDM2 degraders, by removing the protein, can overcome the p53-dependent feedback loop that upregulates MDM2
- MDM2 degrader can induce an acute apoptotic response in tumor cells, increasing efficacy and therapeutic index vs a small molecule inhibitor

UVA CANCER CENTER

An NCI-designated Cancer Center

KT-253 - MDM-2 DEGRADER DEVELOPMENT CANDIDATE APPEARS SUPERIOR TO MDM2/P53 SMALL MOLECULE INHIBITORS

Compound **KT-253** DS-3032 **RG7388** SAR405838 **HDM201** AMG-232 Sankyo/Rain Roche Sanofi Novartis Amgen/Kartos Company IND Ph II / Multiple Ph II: **Clinical stage** Ph II / III PhI/II Paused combo AML combo AML enabling RS4-11 IC₅₀ (nM) (AML Cell Killing) 67 220 620 163 280 0.3 MDM2-HiBiT, DC_{50} (nM) (Degradation) 0.4

UVA CANCER CENTER

An NCI-designated Cancer Center

DMSO

2

0.01

IRAK4 PROTEIN EXPRESSION IN AUTOIMMUNE DISEASES UPREGULATION IN SKIN OF HS PATIENTS COMPARED TO HEALTHY SUBJECTS

IRAK4 protein levels overexpressed in HS patient skin lesions

IRAK4 expression is upregulated in dermis and epidermis of HS patients relative to healthy subject skin

Dermal Immune Cells

Alavi et al., Society for Investigative Dermatology Annual Meeting, 2021

Immunofluorescence (IF)

KT-474 ACHIEVED >95% IRAK4 DEGRADATION AFTER SINGLE DOSE

Percent IRAK4 Reduction in PBMC at 48 Hours Post-Dose Using Mass Spectrometry

	N	Mean IRAK4 Change	Median IRAK4 Change	p value
Placebo	13	-1%	-2%	
25 mg	6	-26%	-39%	0.1
75 mg	6	-73%	-75%	<0.0001
150 mg	6	-81%	-82%	<0.0001
300 mg	6	-84%	-89%	<0.0001
600 mg	7	-96%	-96%	<0.0001
1000 mg	5	-93%	-94%	<0.0001
1600 mg	6	-95%	-95%	<0.0001

SUBSTANTIAL IRAK4 DEGRADATION IN SKIN OBSERVED IN DERMIS AND EPIDERMIS

Representative images from subject in 50 mg cohort

PROTAC THERAPY IN THE T-CELL MALIGNANCIES CONCLUSIONS

- PROTAC therapies, if they fulfil the hype, will be paradigm changing in the treatment of many diseases, not just cancer
- STAT3 certainly represents a reasonable unifying pathway to target, though its part of a complex network and may be not be sufficient alone
- Early phase studies in Hydradenitis suppurativa an IRAK4 driven autoimmune disease of the skin – KT-474 selective degrades the intended target in patients
- An ongoing Phase 1 study of KT-333 dedicated to address the many subtypes of PTCL is underway and will be a pivotal breakthrough if reproducible signals can be demonstrated across STAT3 dysregulated PTCL
- Our laboratory is exploring synergistic combinations with KT-333

ACKNOWLEDGEMENTS

O'Connor/Marchi Laboratory Enrica Marchi, MD, PhD Owen A. O'Connor, MD, PhD Ipsita Pal, PhD John Sanil Manavalan, MD Ariana Sabzevari

BIOMEDICAL Merican Cancer Societye

Loughran LaboratoryKester LaboratoryDavid J. Feith, PhDAnuradha Illendula, PhDThomas P Loughran, Jr., MDTodd E Fox, PhD

Funding: This research was supported in part through R01 FD-R-006814-01, Ivy Biomedical Innovation Fund and the Orphan Blood Cancer Research Initiative at UVA

UVA CANCER CENTER

An NCI-designated Cancer Center

SAVE THE DATE

FEBRUARY 2–4, 2023 LA JOLLA, CALIFORNIA

CONFERENCE CO-CHAIRS

Francine M. Foss, MD Professor of Medicine Section of Medical Oncology Yale University School of Medicine Smilow Cancer Center New Haven, Connecticut, United States

Won Seog Kim, MD, PhD Professor Division of Hematology/ Oncology Samsung Medical Center

Sungkyunkwan University School of Medicine Seoul, Republic of Korea

Owen A. O'Connor, MD, PhD American Cancer Society Research Professor Director, Program for T-Cell Lymphoma Department of Medicine Division of Hematology and Oncology University of Virginia Cancer Center Charlottesville, Virginia, United States

For more information visit: www.tcellforum.com

15th ANNUAL T-CELL LYMPHOMA FORUM

Hosted by Medscape LIVE!

